Evidence for Tonic Control by the GABAA Receptor of Extracellular D-Serine Concentrations in the Medial Prefrontal Cortex of Rodents
نویسندگان
چکیده
Endogenous D-serine is a putative dominant co-agonist for the N-methyl-D-aspartate glutamate receptor (NMDAR) in the mammalian forebrain. Although the NMDAR regulates the higher order brain functions by interacting with various neurotransmitter systems, the possible interactions between D-serine and an extra-glutamatergic system largely remain elusive. For the first time, we show in the rat and mouse using an in vivo microdialysis technique that the extracellular D-serine concentrations are under tonic increasing control by a major inhibitory transmitter, GABA, via the GABAA (GABAAR) in the medial prefrontal cortex (mPFC). Thus, an intra-mPFC infusion of a selective GABAAR antagonist, bicuculline (BIC), caused a concentration-dependent and reversible decrease in the extracellular levels of D-serine in the rat mPFC without affecting those of another intrinsic NMDAR coagonist, glycine and an NMDAR agonist, L-glutamate. The decreasing effects of BIC were eliminated by co-infusion of a selective GABAA agonist, muscimol (MUS) and were mimicked by a GABAA antagonist, gabazine (GBZ). In contrast, selective blockade of the GABAB or homomeric ρGABAA (formerly GABAC) receptor by saclofen or (1,2,5,6-tetrahydropyridin-4-yl)-methylphosphinic acid (TPMPA), respectively, failed to downregulate the prefrontal extracellular D-serine levels. Moreover, the local BIC application attenuated the ability of NMDA given to the mPFC to increase the cortical extracellular concentrations of taurine, indicating the hypofunction of the NMDAR. Finally, in the mouse mPFC, the reduction of the extracellular D-serine levels by a local injection of BIC into the prefrontal portion was replicated, and was precluded by inhibition of the neuronal or glial activity by co-local injection with tetrodotoxin (TTX) or fluorocitrate (Fluo), respectively. These findings suggest that the GABAAR-mediated regulation of the D-serine signaling may exert fine-tuning of the NMDAR function and require both neuronal and glial activities in the mammalian mPFC.
منابع مشابه
prelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملCan ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?
Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...
متن کاملModulation of extracellular d-serine content by calcium permeable AMPA receptors in rat medial prefrontal cortex as revealed by in vivo microdialysis.
In mammalian brains, d-serine has been shown to be required for the regulation of glutamate neurotransmission as an endogenous co-agonist for the N-methyl-d-aspartate type glutamate receptor that is essential for the expression of higher-order brain functions. The exact control mechanisms for the extracellular d-serine dynamics, however, await further elucidation. To obtain an insight into this...
متن کاملP142: The Prefrontal Cortex and Stress-Related Psychopathologies
The prefrontal cortex (PFC) plays a central role in processing both normal and pathological affective states and it is among the brain regions most closely associated with stress-related psychopathology in humans. The ventromedial PFC (vmPFC) in particular has been shown to be required for healthy emotional regulation, social function and risk assessment and decision-making. Also this region ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017